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Cystic fibrosis (CF) is the most common lethal recessive genetic disease affecting children in 
Europe and the US. CF is a multiorgan disease and may present a variety of clinical 
symptoms, like chronic obstructive lung disease, exocrine pancreatic insufficiency (PI) and 
elevated sweat chloride concentration. CF mutations have also been found in other related 
clinical diseases such as congenital bilateral absence of the vas deferens (CBAVD), 
disseminated bronchiectasis and chronic pancreatitis. These clinical overlaps pose 
etiopathogenetic, diagnostic and therapeutic questions. Despite stunning advances in 
genomic technologies and drug discovery, drug therapy often improves disease symptoms 
but does not cure the disease. One of the main causes of this failure in CF cure may be 
attributable to genetic variability and to the scarce knowledge of CF biochemistry. 
Therefore, knowing the genotype of a patient might help improve drug efficacy, reduce 
toxicity and suggests innovative genomic-based therapy approaches. 
Introduction
CF is a multi-system disorder characterized by
defective electrolyte transport in epithelial cells
and abnormally viscous mucus secretions from
glands and mucus epithelia (OMIM #219700).
Symptoms are pancreatic insufficiency associated
with neonatal meconium ileus (~10% of
patients) and chronic obstructive lung disease
superimposed with recurrent opportunistic
infections that progressively destroy lung tissue.
The inflammatory response is a primary cause of
irreversible lung damage. Inflammation is
present in CF before the appearance of bacterial
infections, as demonstrated by increased levels of
neutrophils and IL-8 [1]. Other complications
include liver disease, chronic sinusitis, infertility
in male patients and elevated sweat concentra-
tions. While the pulmonary aspect of CF is seri-
ous enough to lead to an average life expectancy
of about 30 years, there can be a remarkable var-
iability in the presence or severity of each clinical
manifestation [2].

CF is an autosomal recessive disease caused by
nearly 1000 different mutations of the cystic
fibrosis transmembrane conductance regulator
(CFTR) gene, located on 7q35. [4]. These muta-
tions can be grouped into different classes based
on their known or predicted molecular mecha-
nisms of dysfunction and functional conse-
quences for the CFTR protein [5]. A genotype-
phenotype correlation has been reviewed classi-
fying all CFTR variants and their potential
pathogenetic mechanisms. However, since the
disease is characterized by a complex and multi-

organ involvement, these studies are conducted
with respect to specific clinical components of
the CF phenotype. The precise knowledge of the
functional consequences of CFTR mutations
breaks the ice in developing focused therapeutic
approaches, even if there are multiple targets to
hit in this disease, from the regulation of gene
expression to the protein itself.

The purpose of this review is to provide an
insight into the molecular mechanisms underly-
ing CF and summarize the literature with respect
to current clinical, molecular and pharmacological
treatment leading to prevent CF complications.

CFTR gene and protein function
The CF gene was identified on the long arm of
chromosome 7 (7q31.2) and isolated by posi-
tional cloning in 1989. It consists of 27 exons
spanning ~230 kb of genomic sequence and
transcribing 6100 bases mRNA [4-7] (Figure 1A).
CFTR is the protein product, a 1480 amino acid
integral membrane protein of the ATP-binding
cassette family [4]. It is composed of two repeated
motifs, each with a transmembrane domain
(TMD) and a cytoplasmic nucleotide-binding
fold (NBF) separated by a hydrophilic regulatory
domain (R) (Figure 1B). CFTR acts as a chloride
channel activated by a cAMP-mediated PKA
phosphorylation of the R domain and ATP
binding/hydrolysis in the NBFs [8]. Chloride
permeation through this pore is a diffusive proc-
ess that is driven by the electrochemical gradient
for this anion. ATP hydrolysis by NBDs proba-
bly controls channel gating by providing an
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Figure 1. CFTR gene
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energy source for channel transition between
closed and open states. CFTR represents an
important component in the co-ordination of
electrolyte movement across membranes of epi-
thelial cells. Defective electrolyte transport
caused by a loss or dysfunction of cAMP-acti-
vated chloride channels and thus hyperactivity of
sodium channels in epithelial cells are the under-
lying metabolic derangement in CF patients [9].
Abnormal electrolyte transport across epithelia
leads to altered mucus viscosity and recurrent
episodes of obstruction, inflammation and pro-
gressive destruction of affected organs. A regula-
tory relationship has been suggested between
CFTR and epithelial Na+ channels (ENaC) in
human epithelial cells [10], that is activation of
CFTR Cl- channel inhibits ENaC. This could
influence the epithelial Na+ conductance in CF
airways as a secondary effect caused by the
altered inhibition of ENaC due to a mutant
CFTR [11].

Recently, Choi et al. [12] demonstrated that in
addition to disrupting Cl- transport, CF-associ-
ated CFTR mutations also disrupt the transport
of another biologically important ion, HCO3

-.
The authors provided evidence that CFTR is
essential for more than just the transport of Cl-
and that HCO3

- transport is independently
affected by different CF mutations. Bicarbonate

is the body’s major buffer and contributes to
physiological properties of great relevance to CF,
such as mucous viscoelasticity and pancreatic
enzyme activity. Two principal classes of proteins
physically interact with the opposing tails of
CFTR:

• syntaxin 1A 
• proteins containing a PDZ-domain (an amino

acid sequence that mediates protein-protein
interaction through binding with specific pep-
tides) 

Syntaxin 1A is a component of the membrane
traffic machinery that binds to the amino-termi-
nal tail of the CFTR. Proteins containing a
PDZ-domain bind to the carboxy-terminal tail
of this ion channel. The negative modulation of
CFTR currents by syntaxin 1A is mediated by a
direct physical interaction between this mem-
brane protein [13]. The PDZ-domain mediated
interaction could link CFTR to a variety of pro-
teins including signaling molecules, cytoskeletal
elements and other transport proteins [14]. This
interaction could facilitate cross-talk between the
CFTR channels and parallel ion transport path-
ways. Protein-protein interactions may be con-
sidered as targets for pharmacological
intervention. Peptides that block syntaxin 1A-
CFTR interactions can increase the functional

 structure and protein model.
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activity of the most common CF-associated
mutant (∆F508) in a tissue culture model of epi-
thelial cells [13]. Interaction blockers between the
tail and the R domain might be expected to
inhibit CFTR channel activity and could serve as
novel compounds for treating secretory diarrh-
eas. Compounds that stabilize this interdomain
interaction might augment chloride channel
activity in cases of CF caused by partial-loss-of-
function mutations.

In addition to these principal classes of inter-
acting proteins, CFTR molecules are transiently
associated with molecular chaperones (HSP70,
calnexin, CHIP), which actively participate in
CFTR biogenesis [15,16]. The effect of these inter-
actions is crucial for the biosynthesis and degra-
dation of the protein. Mutations in the
cytoplasmic nucleotide binding domains,
including the common allele ∆F508, decrease
the following:

• efficiency of CFTR folding
• the probability of its dissociation from molec-

ular chaperones 
• maturation through the secretory pathway to

the plasma membrane

Clinical phenotype and diagnostic criteria
In addition to phenotypic criteria, a CF history
in the family and/or a positive test for hyper-
trypsinogenemia in neonatal period, may be use-
ful in delineating a CF diagnosis. The only
manifestation of CF in the upper respiratory
tract consists of a thickening of the mucosal lin-
ing of the sinuses (> 90%) and nasal polyps (10–
30%), that can be removed surgically, even if
their recurrence rate is high. Morbidity and mor-
tality in CF is caused by recurrent and chronic
infections of the lower respiratory tract. Differ-
ent theories are being illustrated for explaining
this link. One is that low fluid volume interferes
with mucociliary clearance, or that increased salt
concentrations in the periciliary fluid layer

impair antimicrobial peptide function. Moreover
CF shows a pronounced propensity for inhaled
pathogens to colonize and subsequently infect
the bronchi leading to recurrent and chronic
bronchopulmonary infections. Haemophilus
influenzae, Streptococcus pneumoniae, Pseu-
domonas aeruginosa [17] and Streptococcus aureus
are the most recurrent pathogens. 

Bacterial invasion stimulates a vigorous and
excessive primarily neutrophil-driven inflamma-
tory response throughout the lungs.  Inflamma-
tion products not only damage incoming
bacteria but also the host tissue itself. In fact
inflammation precedes bacterial colonization.
Almost all patients have chronic sinopulmonary
disease and, in postpubertal men, obstructive
azoospermia. Approximately 85–90% of all
patients have exocrine PI. Early CF diagnosis is
important to provide appropriate therapeutic
interventions, prognostic and genetic counseling
and to ensure access to specialized medical serv-
ices. In the majority of cases the diagnosis of CF
is confirmed by demonstrating an elevated
(> 60 nmol/l) sweat chloride concentration.
Around 10% of CF is diagnosed at birth because
of MI but the majority is diagnosed in early
infancy because of recurrent lower respiratory
tract infections or malnutrition or both.

Molecular diagnosis is based on CFTR muta-
tion screening that presents a rate of false-nega-
tive results dependent on geographic areas and
relative frequency of mutation screened. In the
absence of two clearly identifiable mutations a
sweat test is mandatory (a chloride concentration
of > 60mmol/l and a sodium concentration of
> 70 mmol/l are found in ~98% of CF patients),
even for an atypical CF phenotype (1–2% of
patients) consisting of chronic sinopulmonary
disease, pancreatic sufficiency and ‘borderline’
values of sweat chloride concentrations. This
phenomenon could be partially explained by the
so-called ‘mild mutations’ which, when present
on one allele, may be associated with less
increased or borderline values of sweat electro-
lytes. Early diagnosis is important since early
treatment is associated with improved prognosis.

The most widely used test in neonatal screen-
ing is the detection of increased blood levels of
immunoreactive trypsin (IRT) combined with
mutational analysis. Abnormally high levels of
IRT represent the basis for a molecular screening
test, although an acceptable rate of repeat testing
and false-positive and false-negative results. The
vast majority of patients with CF have an abnor-
mal pancreatic acinar and ductular function [18].

eria for CF diagnosis.
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A number of direct and indirect tests are availa-
ble to evaluate exocrine pancreatic function; the
most widely used and informative is faecal fat
analysis with minimum 72 h of pooled stool col-
lection. Direct tests are highly specific and capa-
ble of evaluating the entire range of pancreatic
function but their invasive nature precludes their
use in routine clinical practice.

The presence of P. aeruginosa, if persistent, in
the respiratory tract is highly suggestive of CF
[19] and can be diagnostically helpful in the eval-
uation of patients with atypical features of CF.
One of the most consistent features of the CF
phenotype in postpubertal male subjects is
obstructive azoospermia, a finding present in
98% of affected individuals [20]. In the majority
of patients with CF, azoospermia occurs as a
result of absent or rudimentary vas deferentia.
Usually CBAVD patients have no evidence of
respiratory tract or pancreatic abnormalities and
may have normal or elevated sweat concentra-
tions. The prognosis for these patients is excel-
lent but it is recommended that they be closely
monitored for the development of other CF-
related complications [21].

Lung disease is the primary cause of death in
CF but pulmonary manifestations show a high
degree of intrafamiliar and intraphenotypic vari-
ability. Pancreatic disease ranges from a complete
loss of exocrine and endocrine functions in some
CF patients to a partial function in others and
only to pancreatitis in others.

CF phenotype is highly variable among unre-
lated individuals and within families. The com-
position, frequency and type of CFTR
mutations/variants parallel the spectrum of
CFTR-associated phenotypes, from classic CF to
mild monosymptomatic presentations, like idio-
pathic pancreatitis [22], chronic rhinosinusitis
[23], nasal polyposis [24], asthma [25] or dissemi-
nated bronchiectasis and sarcoidosis [26]. In all
these pathologies the presence of CF mutations
among patients is statistically higher than in nor-
mal controls, indicating that CFTR variants may
be associated with the disease development in
the general population. Molecular analysis
revealed the presence of two CF mutations:

• one that is observed in CF patients
• a second that is a variant not associated with

CF

At the biochemical level the second mutation
permits CFTR to function sufficiently to escape
the CF phenotype but some epithelial tissue dys-
function does occur.

CFTR mutation classification and genotype-
phenotype correlation
Alterations in the CFTR gene designated as CF-
causing mutations should fulfil at least one of the
following criteria: 

• The mutation has to cause a change in the
amino acid sequence that severely affects
CFTR synthesis and/or function.

• Introduce a premature termination signal
(insertion, deletion, nonsense mutations).

• Alter the ‘invariant’ nucleotides of intron
splice sites.

• Cause a novel amino acid sequence that does
not occur in the normal CFTR gene from at
least 100 carriers of CF mutations from the
patient’s ethnic group [27].

All types of mutations in CFTR are represented
(missense (50%), frameshift (22%), nonsense,
splice, small and large in-frame deletions or
insertions) and distributed throughout the entire
gene. These mutations affect CFTR through a
variety of molecular mechanisms, that produce
little or no functional CFTR. Genotypic varia-
tion provides a rationale for phenotypic effects of
specific mutations.

Various mutations can be grouped into six dif-
ferent classes based on their known or predicted
molecular mechanisms of dysfunction and func-
tional consequences for the CFTR protein [28]

(Table 1).
With regards to pancreatic phenotype, two

categories of mutant alleles can be described:
severe and mild [29]. There is a relationship
between specific CFTR alleles and exocrine pan-
creatic function. A severe allele confers pancre-
atic insufficiency only if paired with another
severe allele, whereas a mild allele sustains pan-
creatic function in a dominant fashion, even if
the second mutation is severe. All mild muta-
tions are associated with residual chloride chan-
nel activity at the epithelial apical membranes  to
compensate for a lack of an active CFTR corre-
sponding to a severe allele. This is not true for
the respiratory system where genotype-pheno-
type correlations are poor with a few exceptions.
Severity cannot be predicted on the basis of gen-
otype, even if the progression of pulmonary dis-
ease is less severe in patients with mild CFTR
mutations in comparison with patients carrying
severe genotypes. It is anticipated that new treat-
ments will become available within the next few
years, which will give maximal benefit to young
infants if instituted before lung damage is evi-
dent. In this context, presymptomatic diagnosis
Pharmacogenomics (2002)  3 (1)
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Table 1. Protein-ass

Type

Class I
Nonsense, frameshift, 
splice, large in-frame 
deletion or insertion 
mutations. 

Class II
Mutations that fail to be
properly processed to a 
mature glycosylated form
and transported to the 
apical membrane

Class III
Mutations preventing 
mechanisms required fo
the channel activation 
(ATP binding and 
hydrolysis at the 
nucleotide binding 
domains). 

Class IV
Mutations located within
membrane spanning 
domain, implicated in 
forming the pore of the
channel. 

Class V
Mutations causing 
defects in CFTR channel
expression levels.

Class VI
Nonsense or frameshift 
mutations causing a 70–
100 bp truncation of th
C-terminus of the CFTR 
mutations that impair 
regulation of other type
of ion channels.

Modified from [56,102]
CFTR: Cystic fibrosis transm
based on DNA analysis greatly improves the
doctor-parent relationship. It is not clear how
CFTR alleles contribute to pulmonary disease,
or whether the carrier status acts as a predispos-

ing factor in conjunction with other genetic and
environmental factors, which determine the clin-
ical outcome of CF. The poor correlation
between CFTR genotype and the severity of

isted and chloride channel therapies in CF.

Genotype Phenotype Defect Drugs that may 
improve 
phenotype

G542X
621 + 1 G→→→→T
3905insT
W1282X
R553X
1717 - 1 G→→→→A

PI Lack of CFTR biosynthesis or defective 
biosynthesis producing abnormal 
protein variants. 
No functional CFTR is present at the 
apical membrane of epithelial cells. 
No cell surface chloride transport. 
Phenotypic consequences tend to be 
severe.

Gentamicin
Neomicin (G418)

 

 

∆F508
N1303K
P574H
A455E

PI Defective CFTR processing and 
trafficking. No cell surface chloride 
transport

Chemical chaperones
CPX
Phenylbutyrate
Deoxyspergualin

r 

G551D
G551S

PI Defective chloride channel
Regulation
Reduced or absent cell surface 
chloride transport

Genistein 
Pyrophosphate
UTP
INS36217
Moli1901

 

 

R117H
R334W
G314E
R347P
∆F508
P574H

PS Reduced chloride conductance
Reduced levels of cell surface chloride 
transport

Genistein
Milrinone
Phenylbutyrate
UTP
INS36217
Moli1901

 

3849 + 10 kb
C→→→→T
2789 + 5 G→→→→A
3272-26 A→→→→G
A455E
3120 +1 G→→→→A
1811 + 1.6 kb 
A→→→→G
5T

PS Normal CFTR channnels
Reduced numbers of normal CFTR
Reduced cell surface chloride 
transport

Genistein
Milrinone
Phenylbutyrate

e 

s 

Q1412X, 4326delTC, 
4279insA

Severe Functional but unstable CFTR at the 
apical membrane

See text

embrane conductance regulator; UTP: Uridine triphosphate.
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Figure 2. Diagram o
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lung disease strongly suggests an influence of
environmental and secondary genetic factors
(CF modifiers) [30].

CF pharmacological treatment
In the past, CF was an exclusively paediatric dis-
ease since only a few patients survived child-
hood. At present, a growing number of patients
reach adulthood, representing around 50% of all
CF patients up to now. This is due to a correct
diagnosis of a mild CF form and an effective
therapeutic approach directed towards disease
complications, like chronic bronchopulmonary
infections and malnutrition. The complexity of
the disease requires extensive knowledge and
experience in a wide range of medical issues
(Figure 2). Nearly all CF patients need pancreatic
enzyme substitution with meals, using micro-
sphere preparations with acid-resistant outer sur-
faces that release enzymes in the duodenum.
Steatorrhoea could be controlled by an adjuvant
therapy with cimetidine, ranitidine or omepra-
zole. There is a universal agreement that a high-
fat, high-calorie food intake is essential in
patients with CF. A calorie intake of 150% of the
normal recommendations or even higher may be
necessary to secure normal growth and nutrition.
Aggressive antimicrobial treatment leads to near
normal growth and nutrition.

Insulin-dependent diabetes becomes prevalent
with increasing age and beyond the age of 15
years, preceded by several years of a gradual
decline in weight and lung function. Liver
enzymes are elevated in 10–20% of patients but
symptomatic liver disease is uncommon. The
underlying pathology that leads to liver and bile
duct complications is thought to be a reduced
flow of altered bile fluid, which reflects that a
defective CFTR function in the epithelium of
the bile duct system interferes with development
of the sperm duct in utero. Oral intake of supple-
mental ursodeoxycholic acid can lead to bio-
chemical improvement.

The development of new treatments, includ-
ing pharmacological agents which are expected
to have a major impact on pulmonary hyperac-
tivity, may be important for the life expectancy
of patients and alleviate the problems of gene
therapy. A new procedure has been to developed
to deliver corticosteroids to interfere with some
pathogenetic steps involved in pulmonary
inflammation and alleviate the evolution of lung
injury. This treatment is based on encapsulation
of dexamethasone 21-phosphate (Dex 21-P) in
autologous erythrocytes that, once removed
from circulation, selectively deliver the encapsu-
lated drug to macrophage cells (Figure 3) [31,32].
The major advance in the use of erythrocytes as
drug-delivery systems is that they deliver drugs
only to target cells [31]. Macrophages, play a cen-
tral role in the inflammatory process, since once
activated (i.e., by infectious agents) they produce
inflammatory cytokines, IL-1, IL-6 and TNF-α
(also responsible for the systemic and local syn-
drome following administration of adeno-CFTR
during gene therapy) which in turn induce
cyclo-oxygenase-2 (COX-2) associated with the
production and release of prostaglandines from
macrophages. Nine CF patients were treated by
this approach without P. aeruginosa and Aspergil-
lus fumigatus, by performing three infusions of
erythrocytes loaded with Dex 21-P (mean 5.77
mg to each patient every 3 weeks). Preliminary
data showed constant blood levels of Dex 21-P
up to 10 days without toxic side effects [32].
Long-term administration of steroids to all
patients to modulate or prevent airway inflam-
mation remains controversial [33,34]. Non-steroi-
dal anti-inflammatory drugs (NSAIDs) like
ibuprofen have also been used in CF because of
their ability to inhibit neutrophil migration.
Widespread use of ibuprofen for CF has been
limited by a lack of long-term safety data [35].

f current CF therapeutic strategies.
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Tissue destruction

gan destruction
spiratory failure

Gene therapy

Protein-assist
 therapy

Ion channel
therapy

Anti-infective
Anti-infiammatory

Nutritional

Surgery
Lung trasplantation
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CF pharmacogenomics-based treatment
Searching for active compounds to restore trans-
port function in CF is a priority for creating
drugs for CF patients. New pharmacological
treatments towards a specific class of mutations
is being developed (Table 1) [36]. In general three
sources of molecules are currently tested:

• synthesized compounds
• chemical libraries
• natural products

First generation compounds were addressed to
repair stop codon mutations (class I). This sup-
pression activity is mediated by certain
aminoglycosides [37] that bind to a specific site in
ribosomal RNA and disturb codon-anticodon
recognition at the aminoacyl-tRNA acceptor
site. In cultured cells treated with aminoglyco-
sides (neomicin and gentamicin) full-length
CFTR synthesis is restored to up to 10–20% of
normal levels [38,39]. This treatment also causes
extensive misreading of the RNA code, which
enables the insertion of alternative amino acids
at the site of the mutated codon. Phase I in vivo
trials of iv. and inhaled gentamicin in CF
patients with one or two class I stop mutations
have been completed for determining tolerability
and safety of this procedure [40-42]. Using immu-
nocytochemical and functional [6-methoxy-N-
(3-sulfopropyl) quinolinium (SPQ)-based] tech-
niques, ex vivo exposure of airway cells from stop
mutation CF patients led to the identification of
surface localized CFTR in a dose-dependent
fashion. In a following study, five patients with
CF with stop mutations and five CF control sub-
jects were treated with parenteral gentamicin for
1 week and underwent repeated in vivo measures
of CFTR function (nasal potential difference
(PD) measurements and sweat chloride Cl- test-
ing). Thus gentamicin treatment can suppress

premature stop mutations in airway cells from
patients with CF and produce small increases in
CFTR Cl- conductance (measured by the nasal
PD) in vivo [42]. Restoration of CFTR function
is determined by measuring potential difference
in nasal epithelia. G542X, 621+1 G→T,
W1282X and R553X belong to the class I group
of mutations. Respiratory epithelia regulate an
active ion transport (sodium and chloride) that
generates a transepithelial electrical PD. Nasal
PD can be measured in vivo [43], in patients as
young as a few hours or older children [43,44].
Three features distinguish CF patients from
healthy people in this analysis:

• Higher basal PD (which reflects enhanced
Na+ transport across a relatively Cl- imperme-
able barrier).

• Greater inhibition of PD after nasal perfusion
with the Na+ channel inhibitor (amiloride).

• Little or no change in PD in response to per-
fusion of the nasal epithelial surface with a Cl-
free solution (which reflects an absence of
CFTR-mediated Cl- secretion) [45].

The most intense effort for CF is focused on
class II mutations, which involve protein traf-
ficking and folding, and ∆F508 is contained in
this group. Overexpression of ∆F508 cDNA in
mammalian cells leads to the appearance of func-
tional CFTR Cl- channels in the plasma mem-
brane, suggesting that the ∆F508 mutation is
‘leaky’ [46]. ∆F508 creates a misfolded protein,
which is not properly glycosylated but allows
chloride ions to permeate the channel [47,48].
Many CF patients have at least one copy of
∆F508, the observation on residual function in
∆F508 CFTR raises the possibility of developing
a therapeutic strategy. The wild type protein pro-
ceeds from the endoplasmic reticulum (ER)
through the Golgi apparatus where it acquires

Figure 3. Procedure used for the encapsulation of Dex 21-P in human erythrocytes.

Dex 21-P: Dexamethasone 21-phosphate.

Native
erythrocytes

Preswelled
erythrocytes

Lysed
erythrocytes

Concentrated
red cell lysate

Addition of
Dex 21-P

Resealed erythrocyte
containing encapsulated

Dex 21-P
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terminal glycosylation and from the Golgi to the
cell surface by a mechanism regulated by interac-
tions of cellular proteins with the C terminus
[24]. ∆F508 CFTR cannot be folded properly in
the ER, is subsequentley destroyed and hence
does not reach the apical membrane. 

The ∆F508 maturation can be increased by
treating cells with ‘chemical chaperones’ like
glycerol, although its clinical utility is limited by
the high concentration required to produce clin-
ical benefit [15]. The possibility that small and
cell-permeant chemical chaperones stabilize
unstable CFTR folding intermediates is worthy
of consideration towards innovative pharmaco-
logical treatment of the disease. A class of butyric
acid-derived compounds has shown promise for
the ∆F508 mutation. In vitro investigations have
demonstrated an increased production of mature
CFTR and chloride transport at the cell surface
for both wild type, ∆F508 and G551D, by a
mechanism that involves upregulation at the
transcriptional level and modulation of protein
folding steps [47]. One pilot clinical trial in CF
using phenylbutirate over a 1 week period
showed a partial restoration of chloride transport
in nasal epithelia [50,51]. Flavonoid compounds
like genistein activate ∆F508 CFTR chloride
channel and stimulate the wild type CFTR
channel through direct binding to CFTR, caus-
ing an increase in the channel open time for
chloride ions. These compounds are nevertheless
ineffective at trafficking the ∆F508 protein to
the cell surface. Therefore, nasal PD assays on
∆F508 homozygous patients are not considered
an adequate functional test. Another class of
compounds that is under scrutiny are repre-
sented by α1-adenosine receptor antagonists (8-
cyclopentyl-1,2-dipropylxanthine) [52] that spe-
cifically bind to regions structurally resembling
α-adenosine receptors [53]. This interaction stim-
ulates ∆F508 CFTR movement to the cell sur-
face and induces cAMP-mediated chloride
currents.

Inhibition of phosphodiesterase could
increase CFTR-mediated chloride transport in
wild type cells. In fact, compounds such as milri-
none can restore ∆F508-mediated chloride chan-
nel but are not able to impair cellular trafficking
in the nasal mucous. For this purpose they are
useful for those mutations that already reach the
cell surface. Genistein has also been shown to
restore G551D function (class III mutation) [54].
In this case, mutated CFTR normally trafficks to
the cell membrane but results in lower levels at
the cell surface and with a reduced chloride con-

ductance compared to the normal protein. ATP
binding and phosphorylation to G551D are
severely affected but can be overcome by interac-
tion with flavonoids. The use of genistein in
combination with cAMP-regulating molecules
such as forskolin or PKA can restore the channel
open time. Class IV and V mutations represent
defects in CFTR channel conduction and in
CFTR expression levels, respectively. Augmenta-
tion of CFTR function may restore a sufficient
level to ameliorate the disease. The somministra-
tion of adenosine and its nucleotides can activate
wild type and R117H forms of CFTR in cell cul-
tures binding to the A2B receptor, present in
human bronchial epithelium [55]. Genistein can
overcome this block in regulation. Mutations
that partially reduce chloride conductance
through CFTR (class IV) can be stimulated with
milrinone, which is a phosphodiesterase inhibi-
tor.

Defective ion transport in CF airways results
in the impaired clearance of bacteria and inhaled
particles in mucus lining the respiratory tract. In
the airway the common cellular chemical uridine
triphosphate (UTP) acts briefly on a protein
receptor on the surface of respiratory tract cells
to stimulate chloride and water transport and
improve mucociliary clearance, which could pro-
vide significant benefits to individuals with CF.

Clinical trials are underway using purinergic
compounds such as the P2Y2 receptor agonist
INS365 (a UTP analog). Activation of P2Y2
receptors has been found to both activate Cl-

secretion and inhibit Na+ absorption. The ulti-
mate goal is to recover Cl- channel activity of
mutant CFTR by enhancing either synthesis and
expression of the protein or by activating silent
CFTR Cl- channels. Strategies combining these
drugs with compounds facilitating Cl- secretion
and inhibiting Na+ absorption in vivo may have
the best chance to counteract the ion transport
defect in CF [56]. INS365 may offer chemical sta-
bility advantages over UTP, in fact aerosolized
INS365 is safe when delivered at single doses of
up to 40 mg in adults and children with CF but
higher doses are unlikely to be tolerated [57].
Finally, mutations that lead to a severe reduction
in the normal CFTR protein (class V) could be
‘corrected’ by phenylbutyrates and/or supple-
mented with gene therapy.

Class VI is a new category that includes muta-
tions that impair regulation of other types of ion
channels [57] or mutations that cause the C-ter-
minal truncations leading to its accelerated deg-
radation.
Pharmacogenomics (2002)  3 (1)
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Gene therapy
The discovery of the CFTR gene has enabled
correction of the CF defect in cultured cells [59-

63]. Different vectors (viral or not) are utilised for
gene therapy protocols [64]. Adenovirus (AdV)
was the first vector studied in the context of lung
gene therapy: this method was very effective at
producing high titers of CFTR, also if AdV usu-
ally lacks its integration into the host chromo-
some. Adeno-associated virus (AAV) vectors can
integrate themselves randomly or remain episo-
mal. AAV does not produce a significant cellular
inflammatory response but presents difficulties
in insertion of  genes as  big as CFTR.

Clinical trials performed throughout the
1990s provided evidence that delivery of DNA
by either viral or non-viral means was safe,
though not clinically efficacious [65] using many
techniques and different vectors, like retrovirus,
adenovirus and cationic liposome [59,65]. Despite
these problems, > 20 trials using AdV, AAV and
cationic liposomes have been completed [61,62].
These studies essentially have all been Phase I
(for evaluating safety and dosing). Researchers
have delivered both viral and non-viral vectors
topically to the nose and/or lower airways via
direct liquid instillation or via aerosol. To sum-
marize the results: AdV has dose-specific and
vector-specific toxicity in the form of lung
inflammation. 

At high vector concentrations some individu-
als have demonstrated transient pulmonary infil-
trates. Most subjects also exhibited increased
titers of neutralizing antibodies. They elicit an
immune response limiting their repeated appli-
cation. Trials with more highly engineered AdV
vectors have not been reported. Recombinant
AdVs have the advantage of high transduction
efficiency and are potentially excellent vectors.
On the other hand, aerosol delivery of lipid-
DNA complex was studied in several trials: there
appears to be less toxicity, thus allowing repeated
administration and delivery of large quantities of
DNA. 

A cytokine-mediated response has been
reported (E Alton, personal communication).
Despite the promise of preclinical studies that
established the optimal lipid/plasmid formula-
tion in cell culture they have confirmed the func-
tion of a recombinant human CFTR protein
after transfection and assessed the safety and effi-
cacy of single dosing to lungs of rhesus monkeys.
The investigator was unable to detect recom-
binant CFTR mRNA in nasal epithelial biopsies
or to detect CFTR-mediated chloride transport

by nasal PD measurements. Molecular results are
encouraging but electrophysiological demonstra-
tion of the correction of the functional defect has
generically been absent or very modest.

The limited success of the first-generation of
applied gene therapy has stimulated researchers
in developing alternative approaches for the
treatment of this disease. The more promising
techniques are based on gene-targeting [66]. This
strategy is to insert a molecular mechanism into
cells that target abnormal DNA sequences in the
chromosome and correct the mistake. Different
methodologies have been used to reach this
objective: RNA-DNA chimeras [67] ribozymes
[68] and small fragment homologous replacement
(SFHR) [69-71].

The aim is to target the repair construct to the
regions flanking errors in the native gene. RNA/
DNA chimera then takes advantage of endog-
enous DNA repair enzymes to fix the resulting
mismatch. Rybozymes effect similar repair to the
aberrant DNA sequence. The SFHR approach
uses small fragments of genomic DNA homolo-
gous to the wild type nucleotide sequence for
in vitro transfecting of cells from mutated indi-
viduals (Figure 4) [69]. To date, SFHR has been
used to correct the ∆F508 mutation in vitro in
transformed human epithelial cells from CF
patients [69,73] and recently to modify specific
genomic sequences in exon 10 of the mouse
CFTR in vivo [72]. The results of these studies
showed that SFHR could be used as a gene ther-
apy to introduce specific modifications into cells
of clinically affected organs and cells expressing
the new sequence. SFHR seems to be a promis-
ing technique towards a viable gene therapy for
CF airways.

Outlook
The clinical manifestations of CF include respi-
ratory, reproductive and digestive system dis-
eases. Although these clinical manifestations are
determined by specific CFTR mutations, indi-
vidual phenotypic variations exist between CF
patients. This suggests that some phenotypic fea-
tures are caused by the CFTR genotype (e.g.,
pancreatic status), others, such as pulmonary dis-
ease, are strongly influenced by both secondary
genetic factors and the environment. Less com-
mon manifestations, such as MI, probably
require synergistic involvement of distinct genes
(e.g., CFTR and CFM1) for phenotypic expres-
sion (Lap Chee Tsui, personal communication).
These considerations illustrate the genetic and
clinical complexity of this disorder and suggest
9
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