$$f(x) = \frac{x^2}{2} + \ln|x+1|$$

(maturità 1994)

per
$$x > -1$$
 $y = \frac{x^2}{2} + \ln(x+1)$ (1)

per
$$x > 1$$
 $y = \frac{x^2}{2} + \ln(x+1)$ (2)
per $x = -1$ la funzione non esiste. Quindi $D_f =]-\infty; -1[\cup]-1; +\infty[$

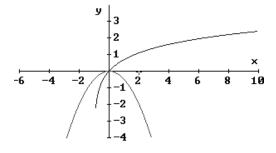
per
$$x = -1$$
 la funzione non esiste.

ndi
$$D_f =]-\infty; -1[\cup]-1; +\infty$$

Segno e intersezioni della (1)

per determinare quando
$$\ln(x+1) > -\frac{x^2}{2}$$
 (**

per determinare quando $\ln(x+1) > -\frac{x^2}{2}$ (**) adoperiamo il metodo grafico considerando il sistema: $\begin{cases} y = \ln(x+1) \\ y = -\frac{x^2}{2} \end{cases}$



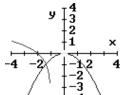
e osserviamo che la (**) è verificata per x > 0

mentre per $x = 0 \implies y = 0$

Segno e intersezioni della (2)

per determinare quando
$$\ln(-x-1) > -\frac{x^2}{2}$$
 (***

per determinare quando $\ln(-x-1) > -\frac{x^2}{2}$ (***) adoperiamo ancora il metodo grafico considerando il sistema: $\begin{cases} y = \ln(-x-1) \\ y = -\frac{x^2}{2} \end{cases}$



Rileviamo che la (***) è verificata per $x < \alpha$ con $-2 < \alpha < -1$.

E per $x = \alpha \implies y = 0$.

Comportamento agli estremi dell'insieme di esistenza.

Essendo
$$\lim_{x \to +\infty} \left(\frac{x^2}{2} + \ln|x+1| \right) = +\infty \qquad \lim_{x \to -\infty} \left(\frac{x^2}{2} + \ln|x+1| \right) = +\infty$$

e
$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$
 $\lim_{x \to -\infty} \frac{f(x)}{x} = -\infty$ il grafico della funzione non ha né asintoti orizzontali né obliqui.

Poiché
$$\lim_{x \to -1^-} f(x) = -\infty$$
 $\lim_{x \to -1^+} f(x) = -\infty$ il grafico ha l'asintoto verticale $x = -1$

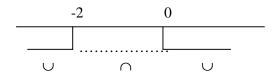
Studio del segno della derivata prima

Ricordando che
$$\frac{d}{dx} \left(\ln |f(x)| \right) = \frac{f'(x)}{f(x)} per f(x) \neq 0$$

$$y' = x + \frac{1}{x+1} \Rightarrow y' = \frac{x^2 + x + 1}{x+1}$$
 e questa risulta positiva per $x > -1 \notin D_f$.

Studio della del segno della derivata seconda $y'' = \frac{x^2 + 2x}{(x+1)^2}$

$$y">0$$
 quando $x^2+2x>0 \Rightarrow -2 < x \lor x>0$



il grafico presenta due punti di flesso $F_1(-2;2)$ $F_2(0;0)$ Le tangenti inflessionali hanno equazione: $y-2=f'(-2)(x+2) \implies y=-3x-4$ $y=f'(0) x \implies y=x$

