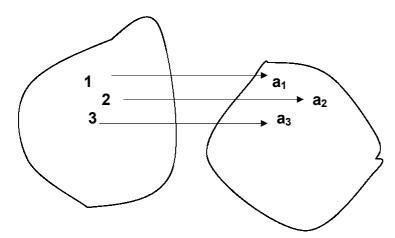
Successioni

Chiamiamo successione una funzione $f:\aleph_0\to\Re$ che associa ad ogni numero naturale diverso da zero un numero reale.



Ad esempio la funzione matematica definita dalla legge: $f(n) = n^2 + 1$ origina la successione che ha come elementi i numeri: 2; 5; 10;

Limiti di successioni convergenti

• Diciamo che la successione a_1, a_2, \ldots, a_n ha limite I per $n \to +\infty$, quando, scelto ad arbitrio un numero positivo ε , è possibile determinare in corrispondenza ad esso un numero n_ε tale che $\forall \, n > n_\varepsilon$ sia verificata la disuguaglianza: $\left| a_n - l \right| < \varepsilon$, ossia: $l - \varepsilon < a_n < l + \varepsilon$ e scriveremo:. $\lim_{n \to +\infty} a_n = l$ (1)

In tal caso diremo che la successione è convergente.

Esempio 1

Verificare che $\lim_{n\to +\infty} \frac{n+1}{n} = 1$ equivale a dimostrare che esistono dei valori di n per i quali è soddisfatta la disequazione: $\left| \frac{n+1}{n} - 1 \right| < \varepsilon \implies \left| \frac{1}{n} \right| < \varepsilon$ (2)

Poiché $n > 0 \implies \frac{1}{n} > 0$ e che $\left| \frac{1}{n} \right| = \frac{1}{n}$, la (2) può essere scritta $\frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$.

Ponendo $n_{\varepsilon} = \frac{1}{\varepsilon}$ abbiamo verificato che esistono elementi della successione aventi indice

 $n > n_{\varepsilon}$ che verificano la disequazione $\left| \frac{n+1}{n} - 1 \right| < \varepsilon$. Possiamo quindi affermare che:

$$\lim_{n\to+\infty}\frac{n+1}{n}=1.$$

Per meglio capire la definizione di limite supponiamo di aver scelto $\varepsilon = \frac{1}{10}$.

Poiché $\frac{1}{\varepsilon} = 10$, scegliamo il dodicesimo termine (n>10) della successione $a_{12} = \frac{13}{12}$ e osserviamo che $1 - \frac{1}{10} < \frac{13}{12} < 1 + \frac{1}{10}$ \Leftrightarrow $\frac{9}{10} < \frac{13}{12} < \frac{11}{10}$ \Leftrightarrow 0.9 < 1.08 < 1.1.

Esempio 2

Verificare che $\lim_{n\to+\infty} \frac{3n^2}{n^2+1} = 3$ (1)

equivale a dimostrare che $\left|\frac{3n^2}{n^2+1}-3\right|<\varepsilon$. Osserviamo che: $\left|\frac{-3}{n^2+1}\right|<\varepsilon$. $\Leftrightarrow \frac{3}{n^2+1}<\varepsilon$ e questa ha come soluzioni: $n<-\sqrt{\frac{3}{\varepsilon}-1}$ e $n>\sqrt{\frac{3}{\varepsilon}-1}$. $(\cos\frac{3}{\varepsilon}-1>0)$.

Poiché la prima disuguaglianza è impossibile, deve essere $n > \sqrt{\frac{3}{\varepsilon} - 1}$.

Ponendo $n_{\varepsilon} = \sqrt{\frac{3}{\varepsilon} - 1}$ $\exists n > n_{\varepsilon}$ per i quali vale la (1).

Se $\varepsilon = 0.1$ per $n > n_{\varepsilon} = \sqrt{29}$, scegliamo il sesto termine della successione $a_6 = \frac{39}{37}$ e verifichiamo che: 2.90 < 2.91 < 3.1.

Limiti di successioni divergenti

• Diciamo che la successione $a_1, a_2,, a_n$ ha limite $+\infty$ per $n \to +\infty$, quando, scelto ad arbitrio un numero M>0, grande a piacere, è possibile determinare in corrispondenza ad esso un numero n_M tale che per ogni $n > n_M$ si ha $a_n > M$. Si dice in tal caso che la successione è **positivamente divergente** e si scrive

$$\lim_{n\to+\infty}a_n=+\infty.$$

Esempio 3

Verificare che $\lim_{n\to+\infty} \frac{n^2+1}{n} = +\infty$ (1)

Equivale a dimostrare che esistono elementi della successione per cui $\frac{n^2+1}{n} > M$ (2).

Poiché n>0 consideriamo solamente $n^2-Mn+1>0$ $(con \Delta = M^2-4>0)$.

Osserviamo che la (2) è verificata per $n < \frac{M - \sqrt{\Delta}}{2} \lor n > \frac{M + \sqrt{\Delta}}{2}$.

Posto:
$$n_M = \frac{M + \sqrt{M^2 - 4}}{2}$$
 la (1) è verificata $\forall n > n_M$.

Infatti se M=100 si ha: n_M =99,98 e, per n=100 $\frac{10000+1}{100} > 100$.

Diciamo che la successione a₁, a₂,....., aₙ ha limite -∞ per n → +∞, quando, scelto ad arbitrio un numero M>0, grande a piacere, è possibile determinare in corrispondenza ad esso un numero nտ tale che per ogni n> nм si ha aռ < -M.
 Si dice in tal caso che la successione è negativamente divergente e si scrive

$$\lim_{n\to+\infty}a_n=-\infty.$$

Verificare che $\lim_{n\to+\infty} (n-2n^2) = -\infty$

equivale a dimostrare che esistono elementi della successione per cui: $n - n^2 < -M$ (2).

Risolvendo si ha:
$$n > \frac{1 + \sqrt{1 + 8M}}{4} = n_M$$
. Per M=100 ed n_M=30 risulta (30-1800)< -100.

NOTA

Esistono successioni che non ammettono né limite finito né limite infinito e non sono né convergenti né divergenti. Esse si dicono indeterminate. Ad es. a_n = $(-1)^n$.

Il numero e

$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$$

Sviluppando la potenza del binomio mediante la formula di Newton otteniamo:

$$\left(1 + \frac{1}{n}\right)^{n} = \binom{n}{0} 1^{n-0} \left(\frac{1}{n}\right)^{0} + \binom{n}{1} 1 \frac{1}{n} + \binom{n}{2} 1 \frac{1}{n^{2}} + \dots + \binom{n}{n} 1^{0} \frac{1}{n^{n}} = 1 + n \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^{2}} + \dots + \frac{1}{n^{n}}.$$

Essendo vera l'uguaglianza:

$$\frac{1}{n^{n}} = \frac{1}{n!} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{n-(n-1)}{n} =$$

$$= \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) \text{ si ha:}$$

$$\left(1 + \frac{1}{n}\right)^{n} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right).$$

All'aumentare di n il secondo membro dell'uguaglianza cresce perché cresce il numero dei termini che sono tutti positivi. La successione è crescente e quindi esiste il limite per n che tende a $+\infty$.

Poiché le quantità tra parentesi sono tutte minori di 1 ed essendo $\frac{1}{2!} < \frac{1}{2}; \frac{1}{3!} < \frac{1}{2^2};; \frac{1}{n!} < \frac{1}{n^{n-1}}$ possiamo scrivere:

$$\left(1+\frac{1}{n}\right)^n < 1+\left(1+\frac{1}{2}+\frac{1}{2^2}+\dots+\frac{1}{n^{n-1}}\right).$$

Osservando che la quantità tra parentesi è la somma dei primi n termini di una progressione geometrica di ragione $q = \frac{1}{2}$ e ricordando che $S_n = a_1 \frac{1 - q^n}{1 - q}$ si ha:

$$S_n = \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 2\left(1 - \frac{1}{2^n}\right) \text{ Quindi } 2 < \left(1 + \frac{1}{n}\right)^n < 1 + 2\left(1 - \frac{1}{2^n}\right) < 3.$$

La successione data ha per limite un numero compreso tra 2 e 3. Detto numero è irrazionale ed è la base dei logaritmi naturali o neperiani. Il suo valore è 2,71828..... Ad Eulero è dovuta la dimostrazione della sua irrazionalità.