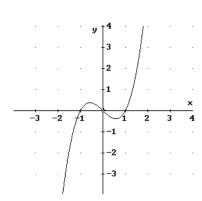
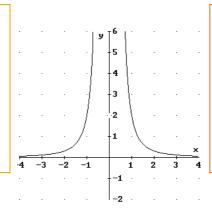

Studio di grafici


 $\lim_{x \to +\infty} f(x) =$ $\lim_{x \to -\infty} f(x) =$ $\lim_{x \to 3^+} f(x) =$ $D_f =$ $codom_f =$ crescente in

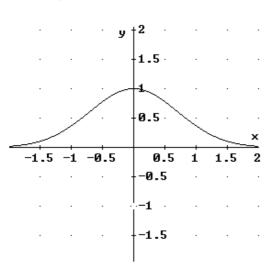
2)



 $\lim_{x \to \pm \infty} f(x) =$ $\lim_{x \to 0^{-}} f(x) =$ $\lim_{x \to 2^{+}} f(x) =$ $D_{f} =$ $codom_{f} =$ decrescente in

3)

 $\lim_{x \to \pm \infty} f(x) =$ $\lim_{x \to 0} f(x) =$ $\lim_{x \to 0} f(x) =$ $D_f =$ $codom_f =$


 $\lim_{x \to \pm \infty} f(x) =$ $\lim_{x \to 0^{-}} f(x) =$ $\lim_{x \to 2^{+}} f(x) =$ $D_{f} =$ $codom_{f} =$

verifica che le funzioni sono continue in $x_0 = 1$

determina il dominio, il condominio e gli intervalli in cui le funzioni sono positive:

.....

4)

 $\lim f(x) =$

$$\lim_{x\to 0} f(x) =$$

$$D_f =$$

$$codom_f =$$

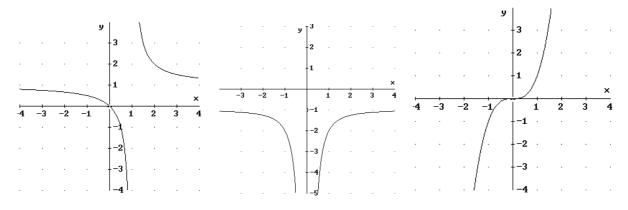
massimo assoluto per $x = \dots$

f(x)è pari o dispari?

5)

Date le funzioni
$$y = \frac{x}{1+x^2}$$
 (1) $y = \frac{1-x}{x^3+1}$ (2) $y = \frac{2x^2+3}{1-x^2}$

$$y = \frac{1 - x}{x^3 + 1}$$
 (2)


$$y = \frac{2x^2 + 3}{1 - x^2}$$

Determina il loro dominio e indica qual è pari e qual è dispari.

6)

verifica che
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x - 2} = -1$$

7)

Quale dei seguenti grafici rappresenta una funzione pari e quale una funzione dispari? Determina i limiti agli estremi degli intervalli di esistenza