Tavola 3 - SPETTRO ELASTICO E DI PROGETTO - Confronti e analisi

Spettro di risposta relativo alla normativa antisismica italiana DM 9 Gennaio 1996

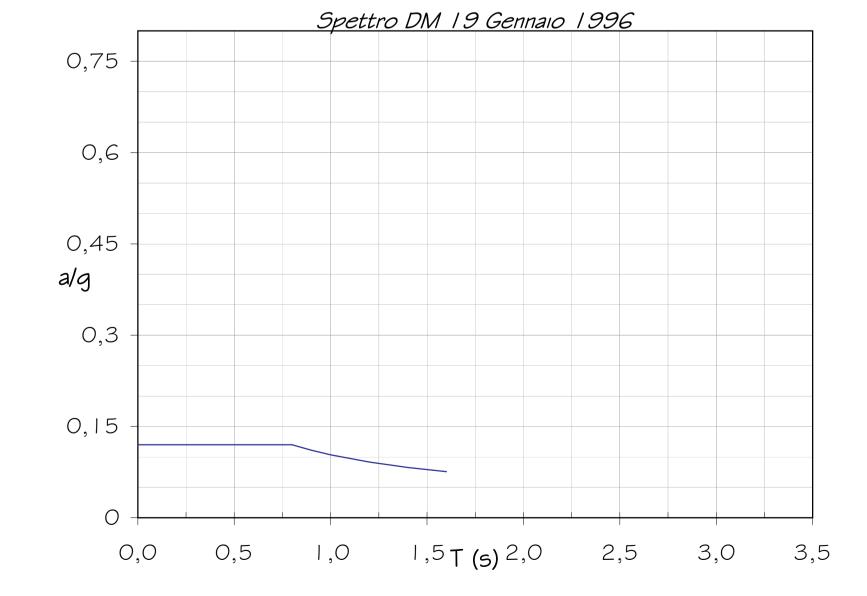
In termini di accelerazione normalizzata è dato dall' equazione :

a/g=C R εβΙ

Nel nostro progetto i parametri che sono stati scelti sono :

C = (5-2)/100

avendo usato S =


C 0, 1

R -	1	se T<0,8 s
	0,862/(T ^{2/3})	se T>0,8 s

ε	/
β	1,2
1	,

Costruzione grafica dello spettro

1	a/g
0	0,12
0,8	0,12
0,9	0,11
1	0,10
1,2	0,09
1,4	0,08
1,6	0,08

Spettro di risposta relativo alla normativa antisismica europea EUROCODICE 8

Innanzitutto va definito lo spettro elastico di risposta relativo al terreno preso in

considerazione. Nel nostro caso, il terreno preso in considerazione è quello di tipo B.

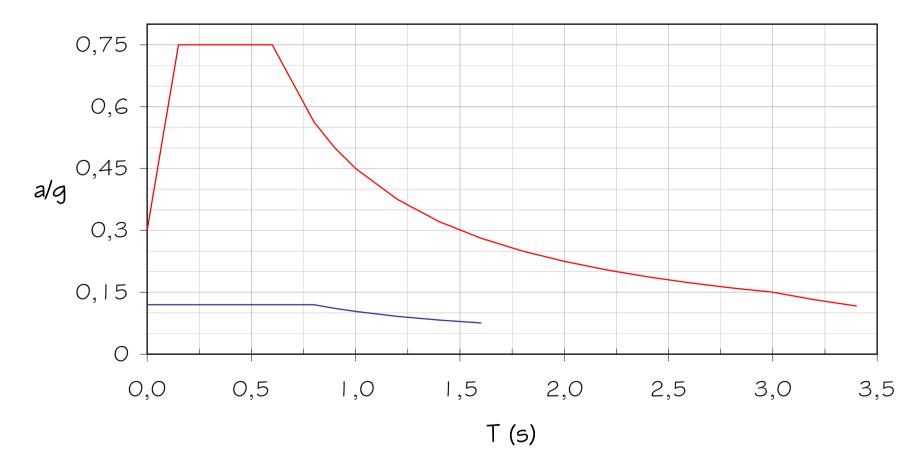
Avente quindi iparametri :

5	βο	k _I	k ₂	T _B (s)	T _C (s)	T _D (s)	α=ag/g	η
/	2,5	/	2	0,15	0,6	3	0,3	/

Normalizzandolo rispetto alla accelerazione di gravità :

 $O < T < T_B$ Se(T)/g=(a_o/g) x S x [| +(T/T_B) x (\eta x\beta_o- |)]

 $T_B < T < T_C$ $Se(T)/g = (a_g/g) \times S \times \eta \times \beta_o$


 $T_C < T < T_D$ $Se(T)/g = (a_g/g) \times S \times \eta \times \beta_o \times [T_C/T]^{k+1}$

 $T > T_D$ Se(T)/g=(a_d/g) x S x η x β_o x $[T_C / T_D]^{k_1}$ x $[T_D / T]^{k_2}$

Costruzione grafica dello spettro

		1
Т	Se(T)/g	
0	0,30	TC
0,15	0,75	ТВ
0,2	0,75	
0,4	0,75	
0,6	0,75	TC
0,8	0,56	
0,9	0,50	
1	0,45	
1,2	0,38	
1,4	0,32	
1,6	0,28	
1,8	0,25	
2	0,23	
2,2	0,20	
2,4	0,19	
2,6	0,17	
2,8	0,16	
3	0,15	TD
3,2	0,13	
3,4	0,12	

Spettro Elastico di risposta

Spettro di progetto relativo alla normativa antisismica europea

EUROCODICE 8

Considerando i nuovi parametri:

kd ₁	kd ₂ q	
0,67	1,67	<i>3,75</i>

Ricordando che $q=q_o \times k_D \times k_R \times k_W > 1,5$

 q_o = 5 essendo il nostro sistema <u>doppio equivalente a telaio</u> poichè la resistenza a taglio del sistema a telaio alla base dell' edificio è maggiore del 50% della resistenza a taglio totale dell' intero sistema strutturale

 $k_D = 0,75$ nel nostro caso di $\underline{DC"M"}$

 $k_R = 1$ nel nostro caso di <u>struttura regolare</u>

 $k_W = 1$ nel nostro caso di <u>sistema doppio equialente telaio</u>

Normalizzato rispetto alla accelerazione di gravità :

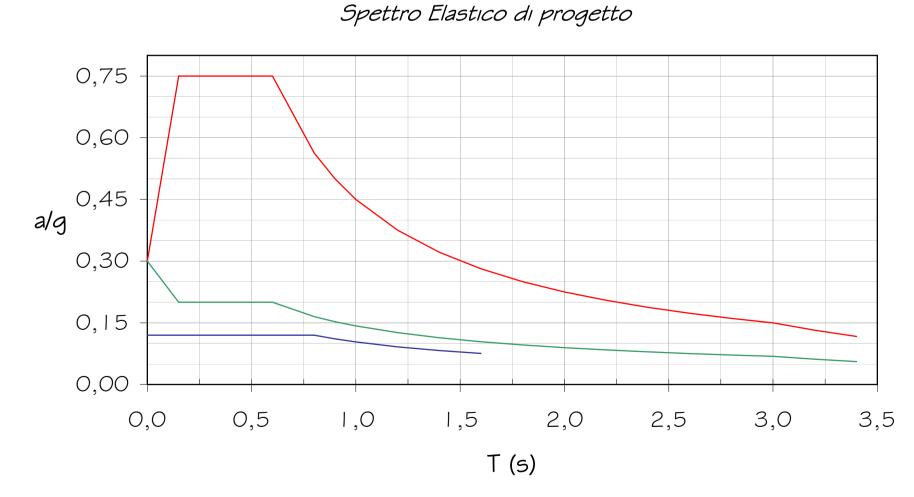
 $O < T < T_B$ $Sd(T)/g = (a_g/g) \times S \times [1 + (T/T_B) \times ((b_o/q) - 1)]$

 $T_B < T < T_C$ $Se(T)/g = (a_g/g) \times S \times (b_o/q)$

 $T_C < T < T_D$ Se(T)/g=(a_g/g) x S x (b_g/q) x [T_C / T]^{kd |}

 $T > T_D$ Se(T)/g=(a_g/g) x S x (b_o/q) x [T_C/T_D]^{kd1} x [T_D/T]^{kd2}

Costruzione grafica dello spettro


		_
T	Se(T)/g	
0	0,30	TC
0,15	0,20	TB
0,2	0,20	
0,4	0,20	
0,6	0,20	TC
0,8	0,17	
0,9	0,15	
1	0,14	
1,2	0,13	
1,4	0,11	
1,6	0,10	
1,8	0,10	
2	0,09	
2,2	0,08	
2,4	0,08	
2,6	0,08	
2,8	0,07	
3	0,07	TD
3,2	0,06	
3,4	0,06	

 $0.2 \times \alpha = 0.06$

perché i valori possano essere considerati attendibili.

Quindi lo spettro è valido fino a dei valori del periodo pari 2,6 s.

Sucretus Flactices di inno acti

